Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
ACS Chem Neurosci ; 14(10): 1896-1904, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37146126

RESUMO

Cochlear calcium (Ca2+) waves are vital regulators of the cochlear development and establishment of hearing function. Inner supporting cells are believed to be the main region generating Ca2+ waves that work as internal stimuli to coordinate the development of hair cells and the mapping of neurons in the cochlea. However, Ca2+ waves in interdental cells (IDCs) that connect to inner supporting cells and spiral ganglion neurons are rarely observed and poorly understood. Herein, we reported the mechanism of IDC Ca2+ wave formation and propagation by developing a single-cell Ca2+ excitation technology, which can easily be accomplished using a two-photon microscope for simultaneous microscopy and femtosecond laser Ca2+ excitation in any target individual cell in fresh cochlear tissues. We demonstrated that the store-operated Ca2+ channels in IDCs are responsible for Ca2+ wave formation in these cells. The specific architecture of the IDCs determines the propagation of Ca2+ waves. Our results provide the mechanism of Ca2+ formation in IDCs and a controllable, precise, and noninvasive technology to excite local Ca2+ waves in the cochlea, with good potential for research on cochlear Ca2+ and hearing functions.


Assuntos
Sinalização do Cálcio , Cóclea , Proteínas Sensoras de Cálcio Intracelular , Análise de Célula Única , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Proteínas Sensoras de Cálcio Intracelular/fisiologia , Análise de Célula Única/métodos , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Camundongos , Camundongos Endogâmicos C57BL
2.
Cell Mol Life Sci ; 79(2): 118, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119538

RESUMO

Store-operated Ca2+ entry (SOCE) is a major pathway for calcium signaling, which regulates almost every biological process, involving cell proliferation, differentiation, movement and death. Stromal interaction molecule (STIM) and ORAI calcium release-activated calcium modulator (ORAI) are the two major proteins involved in SOCE. With the deepening of studies, more and more proteins are found to be able to regulate SOCE, among which the transmembrane (TMEM) family proteins are worth paying more attention. In addition, the ORAI proteins belong to the TMEM family themselves. As the name suggests, TMEM family is a type of proteins that spans biological membranes including plasma membrane and membrane of organelles. TMEM proteins are in a large family with more than 300 proteins that have been already identified, while the functional knowledge about the proteins is preliminary. In this review, we mainly summarized the TMEM proteins that are involved in SOCE, to better describe a picture of the interaction between STIM and ORAI proteins during SOCE and its downstream signaling pathways, as well as to provide an idea for the study of the TMEM family proteins.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Ligação Proteica , Retículo Sarcoplasmático/metabolismo
3.
Am J Physiol Cell Physiol ; 322(1): C38-C48, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788146

RESUMO

The gaseous signaling molecule hydrogen sulfide (H2S) physiologically regulates store-operated Ca2+ entry (SOCE). The SOCE machinery consists of the plasma membrane-localized Orai channels (Orai1-3) and endoplasmic reticulum-localized stromal interaction molecule (STIM)1 and STIM2 proteins. H2S inhibits Orai3- but not Orai1- or Orai2-mediated SOCE. The current objective was to define the mechanism by which H2S selectively modifies Orai3. We measured SOCE and STIM1/Orai3 dynamics and interactions in HEK293 cells exogenously expressing fluorescently tagged human STIM1 and Orai3 in the presence and absence of the H2S donor GYY4137. Two cysteines (C226 and C232) are present in Orai3 that are absent in the Orai1 and Orai2. When we mutated either of these cysteines to serine, alone or in combination, SOCE inhibition by H2S was abolished. We also established that inhibition was dependent on an interaction with STIM1. To further define the effects of H2S on STIM1/Orai3 interaction, we performed a series of fluorescence recovery after photobleaching (FRAP), colocalization, and fluorescence resonance energy transfer (FRET) experiments. Treatment with H2S did not affect the mobility of Orai3 in the membrane, nor did it influence STIM1/Orai3 puncta formation or STIM1-Orai3 protein-protein interactions. These data support a model in which H2S modification of Orai3 at cysteines 226 and 232 limits SOCE evoked upon store depletion and STIM1 engagement, by a mechanism independent of the interaction between Orai3 and STIM1.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cisteína/metabolismo , Sulfeto de Hidrogênio/toxicidade , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores
4.
Biomed Pharmacother ; 145: 112476, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34864310

RESUMO

Store-operated Ca2+ channel (SOC)-regulated Ca2+ entry is involved in inflammation and colorectal cancer (CRC) progression, but clinically applicable treatments targeting this mechanism are lacking. Recent studies have shown that nonsteroidal anti-inflammatory drugs (NSAIDs) not only inhibit inflammation but they also suppress Ca2+ entry via SOC (SOCE). Therefore, delineating the mechanisms of SOCE inhibition by NSAIDs may lead to new CRC treatments. In this study, we tested eight candidate NSAIDs in Ca2+ imaging experiments and found that Aspirin and Sulindac were the most effective at suppressing SOCE. Furthermore, time-lapse FRET imaging using TIRF microscopy and ground state depletion (GSD) super-resolution (SR) imaging revealed that SOC was inhibited by Aspirin and Sulindac via different mechanisms. Aspirin quickly interrupted the STIM1-Orai1 interaction, whereas Sulindac mainly suppressed STIM1 translocation. Additionally, Aspirin and Sulindac both inhibited metastasis-related endpoints in CRC cells. Both drugs were used throughout the study at doses that suppressed CRC cell migration and invasion without altering cell survival. This is the first study to reveal the differential inhibitory mechanisms of Aspirin and Sulindac on SOC activity. Thus, our results shed new light on the therapeutic potential of Aspirin for CRC and SOCE-related diseases.


Assuntos
Aspirina/farmacologia , Canais de Cálcio , Sinalização do Cálcio/efeitos dos fármacos , Neoplasias Colorretais , Sulindaco/farmacologia , Anti-Inflamatórios não Esteroides , Células CACO-2 , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Metástase Neoplásica/tratamento farmacológico , Pró-Fármacos/farmacologia
5.
J Endocrinol Invest ; 45(2): 337-346, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34302683

RESUMO

PURPOSE: Calcium sensing receptor (CaSR), on the surface of normal parathyroid cells, is essential for maintaining serum calcium levels. The normal pattern of CaSR immunostaining remains undefined and is presumptively circumferential. Given the physiological variation in serum calcium, we postulated that CaSR expression could not be uniformly circumferential. Also, cytoplasmic expression has not been evaluated either in normal or pathological tissues. We studied normal parathyroid tissues derived from forensic autopsies and those rimming parathyroid adenomas for membranous and cytoplasmic CaSR immunoexpression. Results were compared with primary hyperparathyroidism (PHPT) to look for any pathogenetic implications. MATERIALS AND METHODS: We evaluated 34 normal parathyroid tissues from 11 autopsies, 30 normal rims, 45 parathyroid adenoma, 10 hyperplasia, and 7 carcinoma cases. Membranous expression was categorized complete/incomplete and weak/moderate/strong; scored using Her2/Neu and Histo-scores; predominant pattern noted. Cytoplasmic expression was categorized negative/weak/moderate/strong; predominant intensity noted. RESULTS: Normal autopsy-derived parathyroid tissues were Her2/Neu 3 + , but incomplete membranous staining predominated in 85%. Their immune-scores were significantly more than the cases (p < < 0.05). The mean histo-score of normal rims was intermediate between the two (p < < 0.05). Cytoplasmic expression was strong in all autopsy-derived tissues, weak/negative in hyperplasia (100%), moderate in 16% adenomas, and 43% carcinomas. CONCLUSIONS: Normal autopsy-derived parathyroid tissues showed strong but predominantly incomplete membranous expression. Surface CaSR expression decreased in PHPT and is probably an early event in parathyroid adenoma, seen even in normal rims. Whether there is a defect in CaSR trafficking from the cytoplasm to the cell surface in adenoma and carcinoma needs further evaluation.


Assuntos
Hiperparatireoidismo Primário , Glândulas Paratireoides , Neoplasias das Paratireoides , Receptores de Detecção de Cálcio/análise , Adulto , Autopsia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Hiperparatireoidismo Primário/metabolismo , Hiperparatireoidismo Primário/patologia , Imuno-Histoquímica , Técnicas Imunológicas/métodos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Masculino , Glândulas Paratireoides/metabolismo , Glândulas Paratireoides/patologia , Neoplasias das Paratireoides/metabolismo , Neoplasias das Paratireoides/patologia
6.
Sci Rep ; 11(1): 20576, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663830

RESUMO

G-protein-coupled receptors (GPCRs) are a target for over 34% of current drugs. The calcium-sensing receptor (CaSR), a family C GPCR, regulates systemic calcium (Ca2+) homeostasis that is critical for many physiological, calciotropical, and noncalciotropical outcomes in multiple organs. However, the mechanisms by which extracellular Ca2+ (Ca2+ex) and the CaSR mediate networks of intracellular Ca2+-signaling and players involved throughout the life cycle of CaSR are largely unknown. Here we report the first CaSR protein-protein interactome with 94 novel putative and 8 previously published interactors using proteomics. Ca2+ex promotes enrichment of 66% of the identified CaSR interactors, pertaining to Ca2+ dynamics, endocytosis, degradation, trafficking, and primarily to protein processing in the endoplasmic reticulum (ER). These enhanced ER-related processes are governed by Ca2+ex-activated CaSR which directly modulates ER-Ca2+ (Ca2+ER), as monitored by a novel ER targeted Ca2+-sensor. Moreover, we validated the Ca2+ex dependent colocalizations and interactions of CaSR with ER-protein processing chaperone, 78-kDa glucose regulated protein (GRP78), and with trafficking-related protein. Live cell imaging results indicated that CaSR and vesicle-associated membrane protein-associated A (VAPA) are inter-dependent during Ca2+ex induced enhancement of near-cell membrane expression. This study significantly extends the repertoire of the CaSR interactome and reveals likely novel players and pathways of CaSR participating in Ca2+ER dynamics, agonist mediated ER-protein processing and surface expression.


Assuntos
Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Células COS , Sinalização do Cálcio , Membrana Celular/metabolismo , Chlorocebus aethiops , Endocitose/fisiologia , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
7.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34705029

RESUMO

Store-operated calcium entry (SOCE) through the Ca2+ release-activated Ca2+ (CRAC) channel is a central mechanism by which cells generate Ca2+ signals and mediate Ca2+-dependent gene expression. The molecular basis for CRAC channel regulation by the SOCE-associated regulatory factor (SARAF) remained insufficiently understood. Here we found that following ER Ca2+ depletion, SARAF facilitates a conformational change in the ER Ca2+ sensor STIM1 that relieves an activation constraint enforced by the STIM1 inactivation domain (ID; aa 475-483) and promotes initial activation of STIM1, its translocation to ER-plasma membrane junctions, and coupling to Orai1 channels. Following intracellular Ca2+ rise, cooperation between SARAF and the STIM1 ID controls CRAC channel slow Ca2+-dependent inactivation. We further show that in T lymphocytes, SARAF is required for proper T cell receptor evoked transcription. Taking all these data together, we uncover a dual regulatory role for SARAF during both activation and inactivation of CRAC channels and show that SARAF fine-tunes intracellular Ca2+ responses and downstream gene expression in cells.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico , Células Jurkat , Fatores de Transcrição NFATC/metabolismo , Ligação Proteica , Conformação Proteica , Molécula 1 de Interação Estromal/química , Molécula 2 de Interação Estromal/metabolismo , Transcrição Gênica
8.
Cells ; 10(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34440656

RESUMO

Calcium (Ca2+) signaling plays a dichotomous role in cellular biology, controlling cell survival and proliferation on the one hand and cellular toxicity and cell death on the other. Store-operated Ca2+ entry (SOCE) by CRAC channels represents a major pathway for Ca2+ entry in non-excitable cells. The CRAC channel has two key components, the endoplasmic reticulum Ca2+ sensor stromal interaction molecule (STIM) and the plasma-membrane Ca2+ channel Orai. Physical coupling between STIM and Orai opens the CRAC channel and the resulting Ca2+ flux is regulated by a negative feedback mechanism of slow Ca2+ dependent inactivation (SCDI). The identification of the SOCE-associated regulatory factor (SARAF) and investigations of its role in SCDI have led to new functional and molecular insights into how SOCE is controlled. In this review, we provide an overview of the functional and molecular mechanisms underlying SCDI and discuss how the interaction between SARAF, STIM1, and Orai1 shapes Ca2+ signaling in cells.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Humanos , Ativação do Canal Iônico , Cinética , Proteína ORAI1/metabolismo , Ligação Proteica
9.
Mol Biochem Parasitol ; 244: 111394, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34216677

RESUMO

The Trypanosomatidae family encompasses many unicellular organisms responsible of several tropical diseases that affect humans and animals. Livestock tripanosomosis caused by Trypanosoma brucei brucei (T. brucei), Trypanosoma equiperdum (T. equiperdum) and Trypanosoma evansi (T. evansi), have a significant socio-economic impact and limit animal protein productivity throughout the intertropical zones of the world. Similarly, to all organisms, the maintenance of Ca2+ homeostasis is vital for these parasites, and the mechanism involved in the intracellular Ca2+ regulation have been widely described. However, the evidences related to the mechanisms responsible for the Ca2+ entry are scarce. Even more, to date the presence of a store-operated Ca2+ channel (SOC) has not been reported. Despite the apparent absence of Orai and STIM-like proteins in these parasites, in the present work we demonstrate the presence of a store-operated Ca2+-entry (SOCE) in T. equiperdum, using physiological techniques. This Ca2+-entry is induced by thapsigargin (TG) and 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ), and inhibited by 2-aminoethoxydiphenyl borate (2APB). Additionally, the use of bioinformatics techniques allowed us to identify putative transient receptor potential (TRP) channels, present in members of the Trypanozoon family, which would be possible candidates responsible for the SOCE described in the present work in T. equiperdum.


Assuntos
Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Protozoários/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Trypanosoma/metabolismo , Animais , Compostos de Boro/farmacologia , Quelantes de Cálcio/química , Biologia Computacional/métodos , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Fura-2/química , Expressão Gênica , Homeostase/genética , Hidroquinonas/farmacologia , Proteínas Sensoras de Cálcio Intracelular/genética , Manganês/metabolismo , Proteínas de Protozoários/genética , Tapsigargina/farmacologia , Canais de Potencial de Receptor Transitório/genética , Trypanosoma/efeitos dos fármacos , Trypanosoma/genética , Tripanossomíase/parasitologia
10.
Commun Biol ; 4(1): 924, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326458

RESUMO

Ratiometric genetically encoded calcium indicators (GECIs) record neural activity with high brightness while mitigating motion-induced artifacts. Recently developed ratiometric GECIs primarily employ cyan and yellow-fluorescent fluorescence resonance energy transfer pairs, and thus fall short in some applications that require deep tissue penetration and resistance to photobleaching. We engineered a set of green-red ratiometric calcium sensors that fused two fluorescent proteins and calcium sensing domain within an alternate configuration. The best performing elements of this palette of sensors, Twitch-GR and Twitch-NR, inherited the superior photophysical properties of their constituent fluorescent proteins. These properties enabled our sensors to outperform existing ratiometric calcium sensors in brightness and photobleaching metrics. In turn, the shot-noise limited signal fidelity of our sensors when reporting action potentials in cultured neurons and in the awake behaving mice was higher than the fidelity of existing sensors. Our sensor enabled a regime of imaging that simultaneously captured neural structure and function down to the deep layers of the mouse cortex.


Assuntos
Cálcio/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Proteínas Sensoras de Cálcio Intracelular/química , Proteínas Luminescentes/química , Engenharia de Proteínas
11.
Int J Biol Sci ; 17(5): 1217-1233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867841

RESUMO

3,3'-Diindolylmethane (DIM), a natural phytochemicals isolated from cruciferous vegetables, has been reported to inhibit human gastric cancer cells proliferation and induce cells apoptosis as well as autophagy, but its mechanisms are still unclear. Store-operated calcium entry (SOCE) is a main Ca2+ influx pathway in various of cancers, which is activated by the depletion of endoplasmic reticulum (ER) Ca2+ store. Stromal interaction molecular 1 (STIM1) is the necessary component of SOCE. In this study, we focus on to examine the regulatory mechanism of SOCE on DIM-induced death in gastric cancer. After treating the human BGC-823 and SGC-7901 gastric cancer cells with DIM, cellular proliferation was determined by MTT, apoptosis and autophagy were detected by flow cytometry or Hoechst 33342 staining. The expression levels of related proteins were evaluated by Western blotting. Free cytosolilc Ca2+ level was assessed by fluorescence monitoring under a laser scanning confocal microscope. The data have shown that DIM could significantly inhibit proliferation and induce apoptosis as well as autophagy in two gastric cancer cell lines. After DIM treatment, the STIM1-mediated SOCE was activated by upregulating STIM1 and decreasing ER Ca2+ level. Knockdown STIM1 with siRNA or pharmacological inhibition of SOCE attenuated DIM induced apoptosis and autophagy by inhibiting p-AMPK mediated ER stress pathway. Our data highlighted that the potential of SOCE as a promising target for treating cancers. Developing effective and selective activators targeting STIM1-mediated SOCE pathway will facilitate better therapeutic sensitivity of phytochemicals acting on SOCE in gastric cancer. Moreover, more research should be performed to validate the efficacy of combination chemotherapy of anti-cancer drugs targeting SOCE for clinical application.


Assuntos
Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Indóis/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas , Molécula 1 de Interação Estromal/metabolismo , Anticarcinógenos/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Compostos Fitoquímicos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
12.
Pflugers Arch ; 473(3): 417-434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33638008

RESUMO

Store-operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway that is present in virtually every cell type. Over the last two decades, many studies have implicated this non-voltage dependent Ca2+ entry pathway in cardiac physiology. The relevance of the SOCE pathway in cardiomyocytes is often questioned given the well-established role for excitation contraction coupling. In this review, we consider the evidence that STIM1 and SOCE contribute to Ca2+ dynamics in cardiomyocytes. We discuss the relevance of this pathway to cardiac growth in response to developmental and pathologic cues. We also address whether STIM1 contributes to Ca2+ store refilling that likely impacts cardiac pacemaking and arrhythmogenesis in cardiomyocytes.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Acoplamento Excitação-Contração/fisiologia , Humanos
13.
Cell Rep ; 33(3): 108292, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086068

RESUMO

Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies.


Assuntos
Cálcio/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Cisteína/metabolismo , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/fisiologia
14.
Phytomedicine ; 79: 153350, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33002827

RESUMO

BACKGROUND: Vascular endothelial activation is pivotal for the pathological development of various infectious and inflammatory diseases. Therapeutic interventions to prevent endothelial activation are of great clinical significance to achieve anti-inflammatory strategy. Previous studies indicate that the total flavonoids from the endemic herbal medicine Nervilia fordii (Hance) Schltr exerts potent anti-inflammatory effect and protective effect against endotoxin lipopolysaccharide (LPS)-induced acute lung injury, and shows clinical benefit in severe acute respiratory syndromes (SARS). However, the exact effective component of Nervilia fordii and its potential mechanism remain unknown. PURPOSE: The aim of this study was to investigate the effect and mechanism of rhamnocitrin (RH), a flavonoid extracted from Nervilia fordii, on LPS-induced endothelial activation. METHODS: The in vitro endothelial cell activation model was induced by LPS in human umbilical vein endothelial cells (HUVECs). Cell viability was measured to determine the cytotoxicity of RH. RT-PCR, Western blot, fluorescent probe and immunofluorescence were conducted to evaluate the effect and mechanism of RH against endothelial activation. RESULTS: RH was extracted and isolated from Nervilia fordii. RH at the concentration from 10-7 M-10-5 M inhibited the expressions of interlukin-6 (IL-6) and -8 (IL-8), monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell-adhesion molecule-1 (VCAM-1), and plasminogen activator inhibitor-1 (PAI-1) in response to LPS challenge. Mechanistically, RH repressed calcium store-operated Ca2+ entry (SOCE) induced by LPS, which is due to downregulation of stromal interaction molecule-1 (STIM-1) following upregulating microRNA-185 (miR-185). Ultimately, RH abrogated LPS-induced activation of SOCE-mediated calcineurin/NFATc3 (nuclear factor of activated T cells, cytoplasmic 3) signaling pathway. CONCLUSION: The present study identifies RH as a potent inhibitor of endothelial activation. Since vascular endothelial activation is a pivotal cause of excessive cytokine production, leading to cytokine storm and severe pathology in infectious diseases such as SARS and the ongoing COVID-19 pneumonia disease, RH might suggest promising therapeutic potential in the management of cytokine storm in these diseases.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Quempferóis/farmacologia , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas de Neoplasias/metabolismo , Orchidaceae/química , Molécula 1 de Interação Estromal/metabolismo , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Quempferóis/isolamento & purificação , Lipopolissacarídeos/farmacologia , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878247

RESUMO

ALG-2 is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in mammalian cells. In order to find new ALG-2-binding partners, we searched a human protein database and retrieved sequences containing the previously identified ALG-2-binding motif type 2 (ABM-2). After selecting 12 high-scored sequences, we expressed partial or full-length GFP-fused proteins in HEK293 cells and performed a semi-quantitative in vitro binding assay. SARAF, a negative regulator of store-operated Ca2+ entry (SOCE), showed the strongest binding activity. Biochemical analysis of Strep-tagged and GFP-fused SARAF proteins revealed ubiquitination that proceeded during pulldown assays under certain buffer conditions. Overexpression of ALG-2 interfered with ubiquitination of wild-type SARAF but not ubiquitination of the F228S mutant that had impaired ALG-2-binding activity. The SARAF cytosolic domain (CytD) contains two PPXY motifs targeted by the WW domains of NEDD4 family E3 ubiquitin ligases. The PPXY motif proximal to the ABM-2 sequence was found to be more important for both in-cell ubiquitination and post-cell lysis ubiquitination. A ubiquitination-defective mutant of SARAF with Lys-to-Arg substitutions in the CytD showed a slower degradation rate by half-life analysis. ALG-2 promoted Ca2+-dependent CytD-to-CytD interactions of SARAF. The ALG-2 dimer may modulate the stability of SARAF by sterically blocking ubiquitination and by bridging SARAF molecules at the CytDs.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Motivos EF Hand , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ubiquitinação
16.
Proc Natl Acad Sci U S A ; 117(35): 21288-21298, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817544

RESUMO

The endoplasmic reticulum (ER) is the reservoir for calcium in cells. Luminal calcium levels are determined by calcium-sensing proteins that trigger calcium dynamics in response to calcium fluctuations. Here we report that Selenoprotein N (SEPN1) is a type II transmembrane protein that senses ER calcium fluctuations by binding this ion through a luminal EF-hand domain. In vitro and in vivo experiments show that via this domain, SEPN1 responds to diminished luminal calcium levels, dynamically changing its oligomeric state and enhancing its redox-dependent interaction with cellular partners, including the ER calcium pump sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Importantly, single amino acid substitutions in the EF-hand domain of SEPN1 identified as clinical variations are shown to impair its calcium-binding and calcium-dependent structural changes, suggesting a key role of the EF-hand domain in SEPN1 function. In conclusion, SEPN1 is a ER calcium sensor that responds to luminal calcium depletion, changing its oligomeric state and acting as a reductase to refill ER calcium stores.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas Musculares/metabolismo , Selenoproteínas/metabolismo , Células HeLa , Humanos , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas Musculares/genética , Oxirredução , Selenoproteínas/genética
17.
Methods Mol Biol ; 2143: 263-270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524486

RESUMO

In vivo calcium imaging in zebrafish provides the ability to investigate calcium dynamics within neurons. Utilizing genetically encoded calcium sensors it is possible to monitor calcium signals within a single axon during axon injury and degeneration with high temporal and spatial resolution. Here we will describe in vivo, time-lapse confocal imaging methods of calcium imaging. Imaging of calcium dynamics with genetically encoded calcium sensors (GECS) within living axons can serve as a method to assess axonal physiology and effects of pharmacologic and genetic manipulation, as well as characterize responses to different injury models.


Assuntos
Axônios/ultraestrutura , Cálcio/análise , Microscopia Intravital/métodos , Imagem com Lapso de Tempo/métodos , Degeneração Walleriana/patologia , Animais , Animais Geneticamente Modificados , Axônios/química , Axônios/fisiologia , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/genética , Citoplasma/química , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas Sensoras de Cálcio Intracelular/análise , Microscopia Intravital/instrumentação , Proteínas Luminescentes , Masculino , Mitocôndrias/química , Imagem com Lapso de Tempo/instrumentação , Degeneração Walleriana/metabolismo , Peixe-Zebra/embriologia
18.
J Cell Physiol ; 235(12): 9644-9666, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32394484

RESUMO

Hematopoietic stem cells (HSCs) are known to reside in a bone marrow (BM) niche, which is associated with relatively higher calcium content. HSCs sense and respond to calcium changes. However, how calcium-sensing components modulate HSC function and expansion is largely unknown. We investigated temporal modulation of calcium sensing and Ca2+ homeostasis during ex vivo HSC culture and in vivo. Murine BM-HSCs, human BM, and umbilical cord blood (UCB) mononuclear cells (MNCs) were treated with store-operated calcium entry (SOCE) inhibitors SKF 96365 hydrochloride (abbreviated as SKF) and 2-aminoethoxydiphenyl borate (2-APB). Besides, K+ channel inhibitor TEA chloride (abbreviated as TEA) was used to compare the relationship between calcium-activated potassium channel activities. Seven days of SKF treatment induced mouse and human ex vivo BM-HSC expansion as well as UCB-derived primitive HSC expansion. SKF treatment induced the surface expression of CaSR, CXCR4, and adhesion molecules on human hematopoietic stem and progenitor cells. HSCs expanded with SKF successfully differentiated into blood lineages in recipient animals and demonstrated a higher repopulation capability. Furthermore, modulation of SOCE in the BM-induced HSC content and differentially altered niche-related gene expression profile in vivo. Intriguingly, treatments with SOCE inhibitors SKF and 2-APB boosted the mouse BM mesenchymal stem cell (MSC) and human adipose-derived MSCs proliferation, whereas they did not affect the endothelial cell proliferation. These findings suggest that temporal modulation of calcium sensing is crucial in expansion and maintenance of murine HSCs, human HSCs, and mouse BM-MSCs function.


Assuntos
Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas de Membrana/genética , Receptores CXCR4/genética , Receptores de Detecção de Cálcio/genética , Animais , Compostos de Boro/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Moléculas de Adesão Celular/genética , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/genética , Técnicas de Cocultura , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imidazóis/farmacologia , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Camundongos
19.
Curr Alzheimer Res ; 17(4): 344-354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469698

RESUMO

Despite decades of research and effort, there is still no effective disease-modifying treatment for Alzheimer's Disease (AD). Most of the recent AD clinical trials were targeting amyloid pathway, but all these trials failed. Although amyloid pathology is a hallmark and defining feature of AD, targeting the amyloid pathway has been very challenging due to low efficacy and serious side effects. Alternative approaches or mechanisms for our understanding of the major cause of memory loss in AD need to be considered as potential therapeutic targets. Increasing studies suggest that Ca2+ dysregulation in AD plays an important role in AD pathology and is associated with other AD abnormalities, such as excessive inflammation, increased ROS, impaired autophagy, neurodegeneration, synapse, and cognitive dysfunction. Ca2+ dysregulation in cytosolic space, Endoplasmic Reticulum (ER) and mitochondria have been reported in the context of various AD models. Drugs or strategies, to correct the Ca2+ dysregulation in AD, have been demonstrated to be promising as an approach for the treatment of AD in preclinical models. This review will discuss the mechanisms of Ca2+ dysregulation in AD and associated pathology and discuss potential approaches or strategies to develop novel drugs for the treatment of AD by targeting Ca2+ dysregulation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Bloqueadores dos Canais de Cálcio/uso terapêutico , Cálcio/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Resultado do Tratamento
20.
J Biomed Sci ; 27(1): 36, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32079527

RESUMO

BACKGROUND: Among gynecological cancers, ovarian carcinoma has the highest mortality rate, and chemoresistance is highly prevalent in this cancer. Therefore, novel strategies are required to improve its poor prognosis. Formation and disassembly of focal adhesions are regulated dynamically during cell migration, which plays an essential role in cancer metastasis. Metastasis is intricately linked with resistance to chemotherapy, but the molecular basis for this link is unknown. METHODS: Transwell migration and wound healing migration assays were used to analyze the migration ability of ovarian cancer cells. Real-time recordings by total internal reflection fluorescence microscope (TIRFM) were performed to assess the turnover of focal adhesions with fluorescence protein-tagged focal adhesion molecules. SOCE inhibitors were used to verify the effects of SOCE on focal adhesion dynamics, cell migration, and chemoresistance in chemoresistant cells. RESULTS: We found that mesenchymal-like chemoresistant IGROV1 ovarian cancer cells have higher migration properties because of their rapid regulation of focal adhesion dynamics through FAK, paxillin, vinculin, and talin. Focal adhesions in chemoresistant cells, they were smaller and exhibited strong adhesive force, which caused the cells to migrate rapidly. Store-operated Ca2+ entry (SOCE) regulates focal adhesion turnover, and cell polarization and migration. Herein, we compared SOCE upregulation in chemoresistant ovarian cancer cells to its parental cells. SOCE inhibitors attenuated the assembly and disassembly of focal adhesions significantly. Results of wound healing and transwell assays revealed that SOCE inhibitors decreased chemoresistant cell migration. Additionally, SOCE inhibitors combined with chemotherapeutic drugs could reverse ovarian cancer drug resistance. CONCLUSION: Our findings describe the role of SOCE in chemoresistance-mediated focal adhesion turnover, cell migration, and viability. Consequently, SOCE might be a promising therapeutic target in epithelial ovarian cancer.


Assuntos
Cálcio/metabolismo , Carcinoma Epitelial do Ovário/fisiopatologia , Adesões Focais/fisiologia , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...